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1. INTRODUCTION 

Persistency of excitation (PE) has been claimed to be essential for guar- 

anteeing some robustness in adaptive control (AC) systems ever since it was 

proven to ensure robust exponentially fast identification [1,2]. But, to 

date, no formal proof exists that PE guarantees global stability robustness 

for discrete time systems in general. In [3] it is shown that if the refer- 

ence input is PE and the signal-to-disturbance ratio is large, then model 

reference adaptive control (MRAC) system signals will be globally bounded. In 

[4] continuous time model reference adaptive control systems are shown to be 

globally stable with unmodeled dynamics if the reference model is strictly 

positive real and the regressor vector is persistently exciting. Attempting 

to extend the same to discrete time MRAC systems failed due to the fact that 

discrete time MRAC systems do not exactly parallel continuous time MRAC 

systems [5, Sec. 5.31. A s  a result, only local stability is proved and slow 

adaptation has to be assumed. No direct and explicit proof has yet been shown 

that persistency of excitation guarantees some global stability robustness 

against nonzero unmodeled dynamics and bounded internal as well as external 

(with respect to the plant) noises for an entire class of discrete time AC 

systems. 

Perhaps fueled by the above bold claim together with a lack of any formal 

proof that PE can guarantee robustness in general, many researchers resorted 

to showing examples of problems of adaptive control systems and developing ad 

hoc remedies for these problems [6,7,8]. It is well known in (nonadaptive) 

robust controls research that a controller design based on the nominal plant 

properties has only limited robustness against unmodeled dynamics in the plant 

191. Showing robustness problems of AC systems demonstrates that the limit 
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extends to AC systems as well, and one should not expect any AC system to 

perform satisfactorily under all unpredictable situations. The remedies in 

[6,7,81 have value in solving the problems specifically exhibited provided 

their required prior informations (e.g., solution starts within certain 

bounded set [ 61 ,  etc.) are verified. However, if an AC system does possess 

some inherent global stability robustness, due to say PE, whether further 

incorporating these ad hoc remedies would increase or decrease such basic 

robustness is a question that remains to be answered. 

- 

- 

The contribution of this paper is in proving directly and explicitly that 

when the regressor vector of a discrete time AC system of a particular class 

(maybe with a fast time-varying plant, as long as the system return-difference 

matrix [ 9 ]  is uniformly bounded and sufficiently slowly varying) is PE, the 

system global stability is inherently robust against nonzero unmodeled 

dynamics expressed in terms of stable factor perturbations 191 as well as any 

bounded noise internal or external to the plant. It is also shown that if the 

adaptation gain approaches zero (slow adaptation) the margin of such robust- 

ness approaches a constant. However, this does not imply that slow adaptation 

necessarily improves global stability robustness. This is justified by 

analyzing a special case when the regressor vector is a scalar. The conclu- 

sion obtained based on this analysis is that, while increasing the adaptation 

rate indefinitely reduces the robustness for sure, the maximum robustness of 

the AC system may be achieved at a finite adaptation rate. 

Thus, i€ the popularity of using the averaging technique in AC system 

stability analysis and the abundance of results obtained based on slow adapta- 

tion, e.g., [5 ,10] ,  Fn any way imply a strictly non-negative relationship 

between slow adaptation and global stability robustness, this result shows the 

contrary. 
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This  paper is organized as follows. In t he  fo l lowing  s e c t i o n ,  some nota- 

t i o n s  and u s e f u l  f a c t s  on robus t  c o n t r o l  and l i n e a r  t ime-varying sys t ems  are 

f i r s t  l i s t e d  f o r  ease of r e fe renc ing  l a t e r .  I n  Sec t ion  3 ,  t h e  class of adapt-  

i v e  c o n t r o l  systems under cons ide ra t ion  i s  developed t o  t h e  e x t e n t  r e l e v a n t  t o  

t h e  d e r i v a t i o n  of t he  r e s u l t s  of t h i s  pape r .  A gene ra l  e r r o r  model is then  

developed f o r  t h i s  class of AC systems i n  Sec t ion  4 ,  followed by the  inhe ren t  

g l o b a l  s t a b i l i t y  robus tness  proofs  assuming p e r s i s t e n c y  of e x c i t a t i o n  of t h e  

r e g r e s s o r  vec tor .  I n  Sec t ion  6 ,  the  e f f e c t s  of t he  a d a p t a t i o n  g a i n  on t h e  

i n h e r e n t  robus tness  are analyzed. F i n a l l y  t h e  r e s u l t s  are summarized and t h e  

paper  is  concluded wi th  a d i scuss ion .  

2. PRELIMINARIES 

L e t  z denote  t h e  t r a n s f e r  func t ion  of the  uni t -delay ope ra to r .  L e t  

R [ z ]  denote  the  r i n g  of polynomials i n  z with r e a l  c o e f f i c i e n t s  and R(z) 

denote  t h e  f i e l d  of r a t i o n a l  func t ions  a s s o i c a t e d  wi th  R[z]. L e t  Z E R(z)  

denote  t h e  set  of c a u s a l  s t a b l e  r a t i o n a l  func t ions  of z, i.e., f u n c t i o n s  wi th  

p o l e s  s t r i c t l y  o u t s i d e  t h e  closed un i t  d i sk .  L e t  M ( Z )  denote  t h e  set  of 

matrices whose elements  belong t o  Z .  

The p l a n t s  considered i n  t h i s  paper are lumped l i n e a r  causa l  d i s c r e t e -  

t i m e  MIMO systems whose t r a n s f e r  matrices ( o r  sequences of t r a n s f e r  matrices 

i f  systems are time-varying) belong t o  M ( R ( z ) ) ,  where M denotes  matrices. 

D e f i n i t i o n  2.1: L e t  U ( Z )  denote t h e  set  of unimodular matrices i n  

M ( Z ) .  It is  def ined  by 
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-1 
U ( Z >  = { F  E: M(Z) :  F E M ( Z ) ) .  

Fact 2.2:  M ( R [ z ] )  C M(Z).  

Fact 2.3: L e t  E ,  F E M ( R [ z ] ) .  I f  E ,  F are l e f t  o r  r i g h t  coprime 

i n  M ( R [ z ] ) ,  then  they  are a l s o  l e f t  o r  r i g h t  coprime i n  M(Z) r e s p e c t i v e l y .  

L e t  a p l an t  P E: M ( R ( z ) )  and a c o n t r o l l e r  C E M ( R ( z ) )  be connected 

as shown i n  Figure 1 .  

-i 

Figure  1. Standard feedback c o n t r o l  system 

L e t  ( N , D )  E M(Z) ,  ND-' = P ,  be a r i g h t  coprime ( i n  M(Z) )  f a c t o r i z a t i o n  

( r . c . f . )  of P and ( X , Y )  E M ( Z ) ,  Y-lX = C ,  be a l e f t  coprime ( i n  M ( Z ) )  

f a c t o r i z a t i o n  (1.c.f .)  of C [ 9 ] .  

Fac t  2.4:  [ 9 1  C s t a b i l i z e s  P i n  t h e  bounded-input bounded-output 

(BIBO) sense  i f  and only i f  

? 

XN + YD E: U ( Z ) .  
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XN + YD is referred to as the return-difference matrix of the system in 

Figure 1 .  BIB0 stability is often referred to as internal stability also. 

Fact 2.5: The poles of the system in Figure 1 are the zeros of XN + YD. 

Let E E M(Z) be expressed as the infinite sum 

00 

i E(z) = 1 Ei z . 
i=o 

Definition 2.6: Define the norm II.Ila: M(Z) + R by 

NElla = 1 PEjlli, 
j =O 

where H * H i w  denotes the induced infinity norm [ll]. 

Fact 2.7: Let E E M(Z). Let y,{E) denote the ]l,-gain of E 

[21, Section 3.21 .  Then, for the systems under consideration, 

yw{E) - IIEla. 

Fact 2.8: [12] Let U E U(Z) and V E M(Z). If IIV - UIIa < l / l l U - L l l a  

then V E U(Z). 

Fact 2.9: [25,19] Let E, F, G E: M(R[z]). If E, F are right coprime 

in M(R[z]), then there exists X, Y E M(R[z]) such that 
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XE + YF = G. 

3. TEE ADAPTIVE SYSTEM 

The class of AC systems considered in this paper consists of M I M O  AC 

systems with direct signal-feedback connections (as opposed to only parameter- 

feedback via the parameter adjustment process) from the outputs through the 

controllers to the inputs of the plants. The primary objective of adaptation 

for these systems is to satisfy asymptotically the necessary and sufficient 

condition for internal stability stated in Fact 2.4. An example of an AC 

system with only parameter-feedback (no explicit signal-feedback) appears in 

[ 1 3 ] .  A general block diagram of this class of AC systems is shown in terms 

of an r.c.f. (N,D) of the strictly causal plant P and an 1.c.f. (X,Y) of the 

controller C in Figure 2, where d denotes disturbances 

external to the plant and n noises internal to the plant. This class of 

systems includes those studied in [14,15,16,17,12]. A general AC methodology 
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for achieving the asymptotic internal stability objective can be developed 

roughly as follows. Complete details can be found in [14] for a system in the 

less general observer-controller structure and in the unit-advance operator 

representation, and in [161 for a system in exactly the same structure as that 

in Figure 2 and in the unit-delay operator (2 )  representation. 

Ignoring n, d, the identifier, the time index k and the estimation 

symbol A ,  consider the feedback system in Figure 2. Suppose P E M(R(z)) 

is not precisely known and the objective is to find a C E M(R(z)) such that 

the feedback system is BIB0 stable with poles at the zeroes of 

U1 = diag{ui} E U(Z), ui E R[zl Tf i- 

Assume N,D E M(R[z]) and are coprime in M(R[z]) from now on. By Facts 

2.2, 2 . 3 ,  2.4, and 2.5, if one can find a pair (X,Y) E M(R[z]) such that 

(1) "1 , XN + YD = 

then implementing C by Y-lX will achieve the above stability objective. 

To find (X,Y) adaptively through identification, an error function E 

needs to be defined. The convergence of this function to zero must result in 

a solution pair for (1) to be identified. so 

that 

To find such E ,  let x := D'lu 

-1 y = ND u = Nx, u = Dx. 

Multiplying (1) by x results in 
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xy + Yu = u X. 1 

Since x cannot be measured directly, it must be estimated also. To do this, 

note that since N and D are right coprime in M(R[z]), there exist A1, 

B1 E M (R[z]) (to be called auxtlliary-controller) such that 

AIN + BID = I 

and, if (1) holds 

XN + YD = U1(AIN + BID). 

Now, multiply ( 4 )  by x to get 

Finally, define c by 

But, this is not the end to completely defining E. This is because if we 

apply a linear estimation algorithm to make c(k) converge to zero now, the 

so lu t ion (A1’ B1) can take a form not necessarily satisfying ( 3 ) .  

Fortunately, it can be shown [16] that by imposing degree constraints on X, 

to be lower- Y, A1, Bl, ul, and restricting the constant term of 

triangular with 1’s in the diagonal, the (A1, B1) that Solves ( 6 )  can be 

€orced to take values such that 

B1 

1 
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~ A ~ N  + B ~ D ~  = 1 

when s(k) converges to zero. Therefore, although the to-be-identified 

solution pair ( A 1 ,  B1) may still not satisfy ( 3 ) ,  it will not change the final 

feedback system poles from the desired values which are the zeros of U1. 

Note that if P were stable to begin with [ 1 2 ] ,  D would be unimodular 

in U(Z), and ( 1 )  can be equated to D instead of U1, i.e., 

XN + YD = D. 

In this case, multiplying ( 7 )  by x yields 

(7) 

xy + Yu = U. 

Defining E by 

( 8 )  8 = u - (Xy + YU) 

a much simpler error function for identifying a controller for the system is 

obtained. The final poles of such a feedback system would be the same as the 

poles of the plant. 

If instead P were stably invertible with known right interactor 

matrix J = zW6H, H a causal polynomial matrix [ 1 6 ] ,  then JN c U(Z) and 

(1) can be equated to JN instead of U1, i.e.9 

XN + YD = JN = z - 6 ~ ~ .  



-10- 

D-1 r 

Multiplying (9) by z 6 x = z D -lu yields 

6 z6 Xy + z Yu = Hy. 

+ N  r - Y  

Defining E by 

6 6 
E = Hy - (XZ y + YZ U) 

again results in a linear function in terms of the unknowns (X, Y) which can 

be identified by applying any linear estimation algorithm. If the identi- 

fied X and Y actually satisfy (9) the feedback system will have all poles 

at z = QD. If the system is further implemented as shown in Figure 3 instead 

of 

Figure 3. Delayed-tracking system 

as in Figure 2 ,  the delayed-tracking scheme of 1171 results. 

For the rest of this paper, we will consider only the general case when 

the plant is not necessarily stable or stably invertible and the error func- 

tion is defined by (6). 

To identify the unknowns A I ,  B1, X, and Y using (6), note that since 

u1 is diagonal the unknowns can be identified row by row independently. 

Hence as far as identification is concerned, the MIMO system being considered 
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is no different from a SISO system. For integrity and generality, however, we 

shall keep the MIMO nature of the system. 

i = 1 ,  e * - ,  n denote the rows of A I ,  B 1 ,  X ,  Y respectively. Let 

Let ai, bi, xi, yi, 

A := 

Then ( 6 )  can be rewritten as 

u := [;I. U I  

E = [ U I A 1  U I B l  X Y] [y’ u0 -y’ -u’]’ 

= [AU BU X Y] [y’ U* -ye -u’]’ 

= [A B X Y] [(U y)’ (U u). -ye -u0I0. 

Let B i  denote the ordered vector of parameters of [ai bi xi yi] to be 

estimated. (Note that usually some of the parameters of [ai bi xi 

are assumed known and need not be estimated.) Let gi(k) denote the k-th 

and $i(k) denote the k-th ordered regressor vector estimate of 

corresponding to e i (k )  and made up by the measurements of -[uiy’ uiuc 

-ye -uO]’. Furthermore, let 

yi 1 

ei 
c. 

a O 1  n 
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e := > 

A 

0 ( k )  := 
[;::I] 

8 ( k )  

@ ( k )  : =  
> 

. 

where Ti(k)’s are symmetric positive definite gain matrices and (k)’s 

are positive scalars. The equation error identification algorithm to be used 

i 

is assumed to be in the form 

Here $(k) denotes the vector of k-th values of signals generated by the 

not-estimated parameters of [ A  B X Y] operating on their corresponding signals 

according to (11). Identification algorithms having precisely this form 

include at least the recursive least squares and the normalized gradient algo- 

rithms [SI. Other algorithms having different forms may also be used. 
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In case the plant were stably invertible and the simpler error function 

(10) were used for identifying the controller, the identification algorithm 

would be assumed to be in the 6-interlaced form 

Note that this is different from the algorithm used in [5, Section 5.3.21 in 

that ~ ( k - 6 )  is a function of $'(k-6) i ( k - 6 )  instead of $'(k-6) i ( k ) .  

This is important because the signal values in $(k-6) are exactly what 

the k-6 th estimate (^xk-6 Y Y  nk-6) of the controller operates on when it 

is implemented as the controller for one period of time. This is also the key 

factor in eliminating the slow-adaptation requirement in proving global 

stability. 

( 1 3 )  is equivalent to 

Since this is a more general form of identification algorithms than ( 1 2 ) ,  we 

shall assume that ( 1 4 )  will be used rather than (12) from now on. 

The controller C will be assumed to be updated each time (X,Y) is esti- 

mated and implemented as (Gk)-l ik on line. Hence the implemented AC 

system will have exactly the structure shown in Figure 2 .  We are now ready to 

derive a complete error model for the class of AC systems under consideration. 
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4. THE COMPLETE ERROR MODEL 

i 

I 
Suppose P has been undermodeled so that  the  p a i r  (N,D) i s  only a 

nominal ( o r  tuned [41) r i g h t  coprime (in M(R[z])) f a c t o r i z a t i o n  of P. 

Correspondingly,  (X,Y) and ( A , B )  are only l e f t  coprime ( i n  M(R[z]))  f a c t o r i -  

z a t i o n s  of the nominal c o n t r o l l e r  and nominal a u x i l i a r y  c o n t r o l l e r  of P 

r e s p e c t i v e l y .  Le t  (N,, D,> E M(R[zl) be a t r u e  r .c.f .  (coprime i n  

M(R[z]))  of P. That  is, N,D, = P. Then t h e  s t a b l e  f a c t o r  per turba-  

t i o n s  (Z,, E*>, 

-1 - 

N N 

N, = N - N,, D, = D - D,, (15) 

are obviously due t o  the  unmodeled dynamics i n  P. The purpose of t h i s  paper ,  

as mentioned i n  the i n t r o d u c t i o n ,  i s  t o  prove t h a t  i E  t h e  adap t ive  methodology 

developed i n  the preceding s e c t i o n  f o r  t h e  nominal p l a n t  ND'l is a p p l i e d  t o  

the  t r u e  p l an t  N,Dil as shown i n  F igure  4 ,  t he  r e s u l t i n g  AC system w i l l  

is s u f f i c i e n t l y  small, r ,  d ,  n s t a y  g l o b a l l y  BIB0 s t a b l e  i f  

are uniformly bounded, and t h e  r eg res so r  mat r ix  $(k) is  PE. This  w i l l  be 

done through e r r o r  model a n a l y s i s .  

a l i [ i ; ,  5;]'II 

r t  r- d n 

( c y  w 
I I 

Figure  4. True AC system 
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To develop a n  e r r o r  model f o r  the complete undermodeled AC sys t em,  f i r s t  
n 

s u b t r a c t  8 from ( 1 4 )  and le t  $(k)  := 8 ( k )  - 8 t o  y i e l d  

C l e a r l y ,  z ( k )  must be t h e  ordered v e c t o r  of c o e f f i c i e n t s  of I 
I 

"k ^ k  ^k ^k  -k -k -k -k [ A  -A B -B X -X Y -Y] =: [ A  B X Y 1. 

^k ̂ k ^k ^k corresponding  t o  those  of [ A  B X Y ] es t imated .  Here i t  is worth 

p o i n t i n g  out  t h a t  c o e f f i c i e n t s  of [ A  B X Y ] corresponding t o  t h e  not- 

e s t i m a t e d  parameters of [A B X Y ] are a l l  ze ro  due t o  t h e  sub t r ac -  

-k -k -k -k 

^ k  ^ k  ^k "k 

t i o n .  Now note  from (14)  t h a t  
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L e t  (A,, B,, A1,, B1,, X,, Y,) E M(R[z]), A,, B, i n  e x a c t l y  t h e  same 

block forms as A ,  B r e s p e c t i v e l y ,  be a s o l u t i o n  of 

X,N, + Y,D, = A,UN, + B,UD, 

= U1*1*N, + UIBl*D, 

=: v, E U(Z) 

c l o s e s t  t o  ( A ,  B ,  A1, B1, X, Y) i n  t h e  H - l l a  norm. Note t h a t  a s o l u t i o n  

of (19) always e x i s t s  because N,, D, are r i g h t  coprime i n  M(R[z]) (Fac t  

2 . 9 ) .  By Fact 2.4, t h i s  i m p l i e s  t h a t  (X,, Y,) and (A1,, B1,) are a t r u e  

c o n t r o l l e r  and a t r u e  a u x i l i a r y  c o n t r o l l e r  of P r e s p e c t i v e l y .  Redefine x 

by Dilu then ( r e f e r r i n g  t o  F igure  4) 

y = N,(x + d, u = D,x. 

Mul t ip ly ing  (19)  by x y i e l d s  

X,(Y - N,n) + Y,u = A,U(y - N,n) + B,Uu = V,x. 

L e t  

N A, := A - A,, 

N x, := x - x* , 
N B, := B - B, , 

N Y, := Y - Y, ; 

then  by the  var ious  d e f i n i t i o n s  
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- (X, - A,U)N,n(k). 

Define V and Va by 

V= XN, + YD, E M ( Z ) ,  

V = AUN, + BUD, E M(Z). a 

Remark 1: Note t h a t  i f  t h e  p l an t  is not  undermodeled X,  Y ,  A,  and B 

e x i s t  such t h a t  V = V, and t h e  g l o b a l  s t a b i l i t y  i s s u e  can be much more 

e a s i l y  addressed. With undermodeling, V and Va can only be c l o s e  t o  each 

o t h e r  ( i n  terms of small i n  g e n e r a l  i f  t h e  degree of under- 

modeling is s l i g h t .  

- 

I V  - Vala) 

Mul t ip ly ing  (22) and (23) by x, one g e t s  

Vx = X(y - N,n) + Yu, 

Vax = AU(y - N,n) + BUu. 
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Sub t rac t ing  (20) from ( 2 4 )  and ( 2 5 )  

N N N 

X,(y - N,n) + Y,u = (V - V,)x =: Vx, 

S u b s t i t u t i n g  i n t o  ( 2 1 )  

$ (k )  - $'(k)G(k+C) = "A+'Uy(k) + 'ijk+'Uu(k) + AUN,n(k) + v" a x ( k )  

-xk+'y(k) - Ikf 'u(k) - XN,n(k) - vx(k )  

N 

= -$'(k)E(k+C) - (7 - Va)x(k) - (X - AU)N,n(k). 

Now, from Figure 4 i t  i s  obvious t h a t  

^ k  ^ k  ^ k  
[X Y 1 [y' u']' = [X I1 [ r '  d']' 

Therefore ,  

vx = [X Y][Y'  u'l' - XN,n 

= -[x -k -k y ] [ye  u']' + ^k X r + d - XN,n. 

Let S(k)  denote  a mat r ix  e n t i r e l y  similar t o  $ ( k )  except  made up of 

t h e  measurements of r and d i n s t e a d  of those  of y and u respec- 

t i v e l y .  Let  a l s o  
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Then 

-u. y 

x = v  -' ([xk %k Tk ";"I (T1 [ - [-')I ) 

u 

where T,M are diagonal matrices corresponding t o  T1, MI and mask out the 

-k -k -k 
elements O E  E (k)  corresponding t o  the parameters of A , B , Y  

appropriately.  Thus, a complete error model i s  f i n a l l y  developed. I t  i s  

described by ( 1 8 ) ,  (26), ( 2 7 )  and is  shown i n  Figure 5 .  
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-u b4 Y n 

U 

Figure 5 .  Complete error model 
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5. ROBUST GLOBAL STABILITY 

The g l o b a l  s t a b i l i t y  proof of t he  e r r o r  system i n  F igure  5 w i l l  be 

analyzed by simply apply ing  t h e  well-known small g a i n  theorem and assuming 

p e r s i s t e n t l y  e x c i t i n g  0; t h a t  is, the re  exis ts  a ,  B ,  N, N 1, 

0 < a < B < 00 such t h a t  f o r  a l l  k > (N-1)c - 

N- 1 

The e r r o r  sys t em w i l l  be cons idered  as c o n s i s t i n g  of t h r e e  subsystems 

S1: h I+ ;(k-C), 

s3: c I+ g. 

We'll begin wi th  t h e  well-posedness i s sue .  Re fe r r ing  t o  F igure  5, S1 

relates h t o  e(k-5) as fo l lows:  
N 
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S2 and S3 can be descr ibed  by t h e  r e l a t i o n s  

N 

g ( k )  = (5 - V a )  V-lc(k).  

S i g n a l s  h and c are r e l a t e d  t o  d ,  f ,  and p (which are uniformly bounded 

i f  r ,  n, and d are uniformly bounded) as fo l lows:  

-1 
c = (I - S2S1S3) (d + f + S2S1p) 

-1 
h = (p  + S C) = p + S3(I - S2S1S3) (d  + f + S 2 S 1 p ) .  3 

Since  A(k) > 0 ,  I + r'/2 ( k ) + ( k ) A - 1 ( ~ ) + ~ ( k ) ~ ' 2  (k)  I ,  t h e r e f o r e  

( I  + (k)+(k)A-1(k)@'(k);/22 (k ) ) - l  i s  wel l -def ined and S1 is  well-posed 

as long as T ( 0 )  i s  bounded. S2 is  well-posed as long as + ( k )  and 

c ( k )  (hence r and d )  are uniformly bounded. S 3  i s  well-posed because 

V ,  Ta E M(Z) and the  assumption t h a t  P €s  s t r i c t l y  causa l  (hence N* is  

s t r i c t l y  causa l )  imply t h a t  t he  cons t an t  term of V = XN* + YD* i s  non- 

s i n g u l a r  and so V E M(R(z)). Therefore  t h e  i n d i v i d u a l  subsystems are 

well-posed. For t h e  e n t i r e  system, s i n c e  S2 c o n s i s t s  OE a t  least  one u n i t  

i s  c a u s a l  and wel l -def ined.  

N 

-1 

' > 1, (I - s2s1sg)-l of de l ay  due t o  - 
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Therefore ,  i f  d,  f ,  p E Roo, then  k, c E Rme and t h e  s m a l l  g a i n  theorem 

can be a p p l i e d  t o  t h e  e r r o r  system. 

The homogeneous p a r t  of S1 is made up by t h e  r e l a t i o n  

T h i s  r e l a t i o n  has  been shown t o  be exponent ia l ly  s t a b l e  f o r  many l i n e a r  esti- 

mation a lgor i thms [18,19] i n  which r ( k )  is  updated i n  c e r t a i n  ways and t h e  

elements  of A(k) are cons tan t  and i n t t i a l i z e d  between (0,1] provided t h a t  

t h e  PE c o n d i t i o n  (28) is  s a t i s f i e d .  Assuming one of t h e s e  a lgor i thms is used 

and aga in  (28) holds ,  then t h e  exponent ia l  s t a b i l i t y  of ( 3 1 )  i m p l i e s  t h a t  

S1 i s  B I B O  s t a b l e  [20,  Lem. 2.21 and y,{Sl} = 6, < a. 

With S1 being B I B O  s t a b l e  t h e  fol lowing is  t r u e .  

Lemma 2: Provided (28) holds and r ,  d are both uniformly bounded by 

s a y ,  B3,  s2  is B I B O  s t a b l e .  

ProoT: (28) i m p l i e s  t h a t  

t h a t  is, @'(k)M is B I B O  s t a b l e .  Since c(k)  is made up by t h e  measure- 

ments of t h e  uniformly bounded r and d ,  S'(k)T i s  a l s o  BIBO s t a b l e .  

Therefore ,  S2 i s  BIBO s t a b l e .  
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Hence, S2S1 is B I B O  s t a b l e  with 

By t h e  small g a i n  theorem [ l l ,  Theorem 3.2.11, t h e  e n t i r e  e r r o r  system 

~€11  be B I B O  s t a b l e  i f  y,{S3} can be made smaller than  l/ym{S2Sl}. 

This  is always p o s s i b l e  due t o  the  fo l lowing  theorem. 

i f  N -1 Theorem 3: y,{S3} = n(T - Va)V l a  is smaller than l/y,{S,S,) 

II 1%; ~I,J*II a is s u f f t c i e n t l y  small. 

Proof:  By d e f i n i t t o n ,  

V = XN, + YD, = XN + YD - (Xi, + YE*) E M(Z) 

where XN + YD E U(Z). There fo re ,  

u N 

XN, + YD, = XN + YD - V. 

By Fact 2.8, if n [ X  Y][%; % ~ ; ] c ” a  < l/II(XN + YD)-‘I 

V- l  E M(Z) and 

then  V E U(Z), a 

-1 nv n a  =: f 1 5  < a. 

By d e f i n i t i o n  a g a i n ,  

I W N  v - va = v - va 
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= XN, + YD, - (AUN, + BUD,) 

= [X-AU Y-BUJ [N; D;]'. 

Applying (4) and no t ing  t h a t  AU = U I A l ,  BU = UIBl  y i e l d s  

v - va = -[X-AU Y-BU] [K E:]-, 

N - V It < II [X-AU Y-BU]lla II[i; ~ ; l c I l a .  a a -  

S ince  x, A, U ,  Y ,  B M ( Z ) ,  tt[X-AU Y-BU]la =: B 6  < m. Therefore ,  

n(7 - Ta)v-lna < n7 - N vana nv-'na 
- 

- 5 6  < B B n [ i ;  "D;lcna. 

Hence i f  II [%: %:I 'I a is  smaller than  

min{l/(ll(XN + YD)-'lta I [ X  YIII,), 1 (fl gB { '2 '1 1 1 

then  I ( ?  - ? )V-'! < l /y , (S2Sl) .  a a 

Thus the  class of AC systems under c o n s i d e r a t i o n  i s  proved t o  be r o b u s t l y  

g l o b a l l y  s t a b l e  a g a i n s t  unmodeled dynamics and bounded n and d u s i n g  t h e  

L 
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most conserva t ive  small g a i n  theorem and assuming p e r s i s t e n c y  of e x c i t a t i o n  of 

t h e  r e g r e s s o r  vector .  It is expected t h a t  t h e  margin of such robus tness  w i l l  

be less -conserva t ive  i n  p r a c t i c e  than  t h a t  t h e  proof of Theorem 3 has perhaps 

impressed upon t h e  reader .  

Remark 4 :  Note t h a t  t h e  key t o  t h e  e x i s t e n c e  of a nonzero g l o b a l  

s t a b i l i t y  robustness  margin is t h e  f i n i t e n e s s  of ym(S2S1). The PE condi- 

t i o n  only ensures  t h i s ;  it i s  - not a necessary c o n d i t i o n  f o r  g l o b a l  s t a b i l i t y  

robus tness .  

The comment preceding Theorem 3 i m p l i e s  t h a t  t h e  smaller y,{S,S,} is 

t h e  more robust t h e  g l o b a l  s t a b i l i t y  of t h e  AC systems under c o n s i d e r a t i o n  

w i l l  be. I n  t h e  next s e c t i o n ,  w e  o f f e r  a q u a l i t a t i v e  a n a l y s i s  of how t h e  

degree of p e r s i s t e n c y  of e x c i t a t i o n ,  i .e. ,  t h e  va lues  of a ,  $ (28), and t h e  

g a i n s  r ( k ) ,  h ( k )  a f f e c t  t h e  smallness  of ym{S2S,} .  

6. ROBUSTNESS VS. DEGREE OF PE AND ADAPTATION GAINS 

Due t o  the  d i f f i c u l t i e s  of ana lyz ing  t h e  e f f e c t s  of time-varying m a t r i x  

g a i n s  on t h e  robustness  i n  g e n e r a l ,  we w i l l  cons ider  only SISO AC systems and 

assume I'(k), h ( k )  t o  be equal  t o  t h e  scalar c o n s t a n t s  y ,  X respec-  

t i v e l y  i n  t h i s  s e c t i o n .  



-27- 

N 

Recall from Section 5 that S1 relates h to 8(k-5) by (28) or 

where m := rk/c1. Let t := [j/NJ, since (I + 1 +(k-ic)+*(k-ic))-' - < I x 

where if t < 1 the term within the parenthesis is defined to be equal to 

1. Now, 

RN-1 EN-1 c +(k-ic)+*(k-ic) + + (x) y N  II +(k-ic)+'(k-ic))-'. 
i=( R-l)N 

= ( I + L  
i=(R-l)N 

If y is small and approaches 0, then 
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i f  y + 0. From Figure  5 i t  is  obvious N& This  imp l t e s  t h a t  

t h a t  i f  IIr(k)ll, 5 B 7  V k then  

y,{Sl} = 7 

where k l ,  k2 denote the  ranks of T ,  M r e s p e c t i v e l y .  This  l e a d s  t o  

Therefore ,  i f  then  t h e  e r r o r  system, 

hence t h e  AC s y s t e m ,  w i l l  be g l o b a l l y  BIB0 s t a b l e  f o r  y + 0. I n  t h i s  s e n s e  

t h e  va lue  p may be termed t h e  inhe ren t  (due t o  PE) robus tness  margin of 

t h e  AC sys t em when y + 0. 

y,{S3} < a/(Nl?2 (klB7 + k 2 i 2  ) )  =: p 

The above resu l t  as w e l l  as the  l a r g e  number of AC system robus tness  

r e s u l t s  obtained based on slow a d a p t a t i o n  ( o r  t h e  ave rag ing  a n a l y s i s )  [ S I  does 

no t  imply t h a t  slow a d a p t a t i o n  n e c e s s a r i l y  i n c r e a s e s  o r  dec reases  t h e  inhe ren t  
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I robus tness  of an  AC system. This can be en l igh tened  by ana lyz ing  t h e  robus t -  

nes s  margin of a SISO system with only one parameter t o  be es t imated .  - I I 
Consider ( 3 5 ) ;  if $ ( k )  is a scalar,  then  a l l  terms under t h e  

I 

i n v e r s i o n  s i g n  are nonnegative. Therefore ,  i f  ( 2 8 )  is s a t i s f i e d ,  I 
where % A ( k )  denotes  t h e  nonnegatlve c o n t r i b u t i o n  by the  terms i n  ( 3 5 )  of 

o r d e r s  o r  h igher .  Assuming A(k) > n > 0 f o r  a l l  but f i n i t e  number 
A 2  

. 2  
A 

of k, then i t  is  reasonable  t h a t  a A ( n )  > 0 e x i s t s  such t h a t  on t h e  
I 

average  t 

S u b s t i t u t i n g  ( 3 7 )  i n t o  ( 3 4 )  and go through similar manipula t ions  as f o r  t he  

Y + 0 case r e s u l t s  i n  

and t h e r e f o r e  

From ( 3 8 )  i t  is obvious t h a t  
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is not n e c e s s a r i l y  the  smallest y,{S,}. This  can be v e r i f i e d  N& But - a 

by d i f f e r e n t i a t i n g  ( 3 8 )  with  r e spec t  t o  y and equat€ng t o  ze ro  t o  y i e l d  

( 3 9 )  2 a E A ( n )  + (1) Y 2  A 2 (n) + (a2 - A(n)> = 0. 

This  equat ion  has  only one v a l i d  s o l u t i o n  a t  

2 if A ( n )  - > a A t  t h i s  s o l u t i o n  po in t  

2 except  when A ( n )  = a . This  imp l i e s  t h a t  which is smaller than  - 
provided A ( n )  > a , y,{ SI} reaches i t s  lowest  va lue  (hence t h e  AC s y s t e m  

i s  t h e  most robust  a g a i n s t  unmodeled dynamics and d i s tu rbances )  when t h e  t r u e  

ra te  of adap ta t ion  1 is  - not  t he  s lowes t  poss ib l e .  

N i l 2  
a 

2 

x 

7. CASE OF TINE-VARYING PLANT 

Suppose t h e  p l a n t  P had been not only undermodeled but  a l s o  t i m e -  

vary ing .  The development i n  Sec t ion  4 would go through e n t i r e l y  whi le  the 

resul ts  of Sec t ions  5 and 6 would s t i l l  hold t r u e  almost completely i f  one 

simply adds a s u p e r s c r i p t  k t o  the  symbols 
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The r e s u l t s  of Sec t ions  5 and 6 w i l l  become completely t r u e  i f  one f u r t h e r  

assumes t h a t  t h e  now time-varying subsystem ( s e e  F igure  5) i s  (Vk)-’ 

s u f f i c i e n t l y  slowly vary ing  while s a t i s f y h g  (Vk>-’ E M(Z) V k 

IIN,II IID,U IX H a ,  IIA I I a  a l l  uniformly bounded over  k. k k k k 
a ’  a ’  

These are r equ i r ed  so  t h a t  (Vk)-’ i s  BIBO s t a b l e  [28,29] w 

k -1 y,{(V ) } and f ,  p, I$ are uniformly bounded as assumed. Then 

and 

t h  f i n  .te 

-k 
y,{Tk - Va} can be g r e a t e r  than zero and s t i l l  s a t i s f y  the  unity-loop-gain 

c o n d i t i o n  of t h e  small g a i n  theorem. Thus t h e  g l o b a l  BIBO s t a b i l i t y  of the  AC 

system wi th  a time-varying p l a n t  is  a l s o  proved t o  be robus t .  Note t h a t  

a l though  assuming t h e  p l a n t  v a r i e s  slowly would make t h e  assumption t h a t  

( V k ) - l  is s u f f i c i e n t l y  slowly varying more e a s i l y  s a t i s f i e d ,  t h e r e  is no 

appa ren t  need t o  do so ,  no t  even f o r  t h e  sake  of achiev ing  the  d e s i r e d  per- 

formance as i n d i c a t e d  by our  pre l iminary  a n a l y s i s  (no t  inc luded) .  

8 -  RESULTS AND DISCUSSION 

It has been shown t h a t ,  provided t h e  r e g r e s s o r  vec tor  is p e r s i s t e n t l y  

e x c i t i n g ,  t h e  class of adap t ive  c o n t r o l  systems wi th  p o s s i b l y  t i m e  va ry ing  

p l a n t s  developed i n  Sec t ion  3 is robus t ly  g l o b a l l y  BIBO s t a b l e  a g a i n s t  not 

only unmodeled p l a n t  dynamics expressed t n  terms of s t a b l e  f a c t o r  pe r tu rba -  

t i o n s  but a l s o  uniformly bounded a r b i t r a r y  i n t e r n a l  no i se s  as w e l l  as e x t e r n a l  

d i s tu rbances .  Although the  margin of such robus tness  may seem p r e t t y  small 
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from the proofs, its mere existence should be highly useful in terms of 

enhancing user’s confidence on using adaptive methodologies for systems 

control in practice where a plant is seldom as imprecisely known as has been 

assumed in the proofs. 

Although the analysis of robustness margin as related to the degree of 

persistency of excitation and the adaptation gain in Section 6 is for the very 

specialized case when the regressor vector is a scalar, the result casts a 

doubt on the absolute benefit of slow adaptation. However, notice that our 

analysis did not take into account of the possible effects of varying the 

adaptation gain on the uniform upper bound True relationship between 

slow adaptation and the inherent global stability robustness margin can only 

be obtained when such effects are properly taken into account. 

81/2. 

It is unfortunate that, as in [4,5], the PE condition assumed in this 

paper presumes a uniform upper bound on the regressor signals before the proof 

of system stability. A recent result proving stability robustness of an AC 

methodology without a priori assuming bounded regressor is available in 

1211. However, a complex adaptation law needs to be implemented, and 

stringent yet contradictory conditions on the adaptation gain need to be 

verified in order for the results to be valid. These conditions also favored 

slow adaptation which, as we pointed out, is not necessarily nonnegatively 

related to the inherent global stability robustness. In spite of these 

shortcomings, though, the solution methods used in [21] may still be highly 

useful for eliminating the upper-boundedness assumption made via the PE 

condition. 



-33- 

REFERENCES 

[ 11 Anderson, B. D. 0. , "Exponential convergence and persistent excitation," 

Proc. of 21st IEEE CDC, Orlando, Florida, December 1982, pp. 12-17. 

[2] Anderson, B. D. O., C. R. Johnson, Jr., "Exponential convergence of 

adaptive identification and control algorithms," Automatica, Vol. 18, 

No. 1, 1982. 

[3] Narendra, K. S., A. M. Annaswamy, "Robust adaptive control in the 

presence of bounded disturbances," IEEE Trans. Automat. Contr., Vol. AC- 

31, April 1986, pp. 301-316. 

[4] Kosut, R. L., B. Friedlander, "Robust adaptive control: Conditions for 

global stability," IEEE Trans. Automat. Contr. , Vol. AC-30, No. 7, July 

1985. 

Anderson, B. D. O., R. R. Bitmead, C. R. Johnson, Jr., P. V. Kokotovic, 

R. L. Kosut, I. M. Y. Mareels, L. Praly, B. D. Riedle, Stability of 

Adaptive Systems: Passivity and Averaging Analysis, The MIT Press, 

Cambridge, Massachusetts, 1986. 

Ioannou, P. A., P. V. Kokotovic, "Instability ana,ysis and improvement 

of robustness of adaptive control," Automatica, Vol. 20, No. 5, 

September 1984. 



-34- 

[7] Ioannou, P. A . ,  K. Tsakalis, "Instability phenomena in adaptive control 

independent of persistence of excitation conditions," University of 

Southern California Technical Report 86-04-1, April 1986. 

[8] Sastry, S. S., "Model reference adaptive control-stability, parameter 

convergence and robustness," IMA J. Math. Control Info., Vol. 1, 1984, 

pp. 27-66. 

[91 Vidyasagar, M., Control System Synthesis - A Factorization Approach, The 

MIT Press, Cambridge, Massachusetts, 1985. 

[lo] Riedle, B., P. V. Kokotovic, "A stability-instability boundary for 

disturbance-free slow adaptation and unmodeled dynamics," Proc. of 23rd 

- CDC, Las Vegas, Nevada, December 1984. 

[ll] Desoer, C. A . ,  M. Vidyasagar, Feedback Systems: Input-Output 

Properties, Academic Press, New York, New York, 1975. 

[12] Ma, C. C. H., M. Vidyasagar, "Direct globally convergent adaptive 

regulation of stable multivariable plants," Modeling, Identification and 

Robust Control, edited by C. I. Byrnes and A. Lindquist, North-Holland, 

Amsterdam, 1986, pp. 59-69. 

[13] Rohrs, C. E., "Stability mechanisms and adaptive control," Proc. of 23rd 

CDC, Las Vegas, Nevada, December 1984. - 



-35- 

[14] Elliott, H., W. A. Wolovich, M. Das, "Arbitrary adaptive pole placement 

for linear multivariable systems," IEEE Trans. Automat. Contr., Vol. AC- 

29, No. 3, March 1984. 

[15] Kreisselmeier, G., M. C. Smith, "Stable adaptive regulation of arbitrary 

n-th-order plants," IEEE Trans. Automat. Contr., Vol. AC-31, No. 4, 

April 1986. 

[16] Ma, C. C. H., Discrete Multivariable Adaptive Control - A Stable Coprime 
Factorization Approach, Thesis dissertation, Electrical Engineering, 

University of Waterloo, Waterloo, Ontario, Canada, N2L-3Gl. 

i 

[17] Goodwin, G. C., R. S. Long, "Generalization of results on multivariable 

I 

adaptive control," IEEE Trans. Automat. Contr., Vol. AC-25, No. 6 ,  

December 1980. 

[18] Goodwin, G. C., K. S. Sin, Adaptive Filtering Prediction and Control, 

Prentice-Hall Inc., Englewood Cliffs, New Jersey 07632. 

[19] Johnstone, R. M., C. R. Johnson, Jr., R. R. Bitmead, B. D. 0. Anderson, 

Exponential convergence of recursive least squares with exponential II 

forgetting factor," Proc. of 21st IEEE CDC, December 1982, pp. 994-997. 

[20] Anderson, B. D. O., "Internal and external stability of linear time- 

varying systems," SIAM J. Control Optim., Vol. 20, No. 3, May 1982. 



-36- 

[ 2 1 ]  Ortega, R., L. Praly, I. D. Landau, "Robustness of discrete-time direct 

adaptive controllers," IEEE Trans. Automat. Contr., Vol. AC-30, No. 12, 

December 1985. 



Standard Bibliographic Page 

ICASE Report No. 86-79 
4. Title and Subtitle 

1. Report No. NASA CR-178224 12. Government Accession No. 13. Recipient's Cataloe No. .. 

5. Report Date 

7. Author(s) 

C. C. H. Ma 
' 

9. erforl;ning Organization Name and Address 
fnstitute for Computer Applications in Science 

INHERENT ROBUSTNESS OF DISCRETE-TIME ADAPTIVE 
CONTROL SYSTEMS 

8. Performing Organization Report 
86-79 

10. Work Unit No. 

National Aeronautics and Space Administration 

~~ 

and Engineering 
Mail Stop 132C, NASA Langley Research Center 
Hampton, VA 23665-5225 

12. Sponsoring Agency Name and Address 
r w r a r r n r  RPnrrrt 

14. Sponsoring Agency Code 

11. Contract or Grant No. I NASl-18107 

-__ 

1 13. Type of Report and Period Cove 

Unclassified - unlimited 

Washington. D.C. 20546 
15. Supplementary Notes 

Langley Technical Monitor: 
J. C. South 

Submitted to Control Theory 
and Advanced Technology 

Final Report 
16. Abstract 

Global stability robustness with respect to unmodeled dynamics, arbitrary 
1 bounded internal noise, as well as external disturbance is shown to exist for 

a class of discrete-time adaptive control systems when the regressor vectors 
of these systems are persistently exciting. Although fast adaptation is 
definitely undesirable, so far as attaining the greatest amount of global 
stability robustness is concerned, slow adaptation is shown to be not 
necessarily beneficial. The entire analysis in this paper holds for systems 
with slowly varying return di€€erence matrices; the plants in these systems 
need not be slowly varying. 

- - ~~ 

7. Key Words (Suggested by AuthorsG)) 
adaptive control, robustness, inherent 
robustness, adaptive system error model 

_ _ _ _ ~ _ _ _ _ _ _  - ~ 

18. Distribution Statement 
08 - Aircraft Stability and Control 
18 - Spacecraft Design, Testing and 

Performance 
71 - Acoustics 
31 - Engineering (General) 


